

MARKEL Sp. z o.o, Piaseczno, Poland

Vienna rectifier as an input stage of the EV charger

mgr inż. Grzegorz WRONA

P IS EP

MARKEL Sp. z o.o, Piaseczno, Poland

Outline

□ Introduction

EV charging system

- 20 kVA Vienna rectifier
- □ System description
- □ Control algorithm
- □ Experimental results
 - scope records
 - power losses/efficiency measurements
 - power quality measurement

□ Conclusion

Varsaw University of Technology

WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS

MARKEL Sp. z o.o, Piaseczno, Poland

BAT.

Introduction

LV AC/DC

Developed EV charger

dr hab. inż. **Jacek RĄBKOWSKI** mgr inż. **Radosław SOBIESKI**

dr inż. Mariusz ZDANOWSKI

mgr inż. **Przemysław TROCHIMIUK**

arodowe Centru

This work is a part of "Power electronic energy management system in the fast-charging energy storage processes" project co-financed by the National Center for Research and Development under the competition "Sciezka dla MAZOWSZA"

S.E.E.

50 Hz

3 x 400 V_{RMS}

Rzeczpospolita Polska

LV DC/DC

4

MARKEL Sp. z o.o, Piaseczno, Poland

Introduction

Developed EV charger

WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS

MARKEL Sp. z o.o, Piaseczno, Poland

Demonstrator

- Three phase, three level topology
- Unity power factor
- Unidirectional power flow
- Low complexity

WARSAW UNIVERSITY OF TECHNOLOGY **INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS**

MARKEL Sp. z o.o, Piaseczno, Poland

IS EP

С

Demonstrator

Vienna rectifier

/ienna rectifier PCB

L1, V_1 , S_n $f_{\rm s}$ T_{2a} ,

	L10 L20 L30			D_{1a}	D_{1c}
Symbol	Parameter	Value	Unit	T_{3a}	T_{3c}
L1, L2, L3	Phase voltages	230	v		 ,
<i>V</i> ₁ , <i>V</i> ₂	Output voltages	400	v		
S _n	Rated power	20	kVA		
$f_{\rm s}$	Switching frequency	66	kHz		
$T_{2a}, T_{2b}, T_{2c}, T_{3a}, T_{3b}, T_{3c},$	SiC MOSFETs	C3M0030090K	-		
$D_{1a}, D_{1b}, D_{1c}, D_{4a}, D_{4b}, D_{4c},$	Diodes	STPSC20H12	-		
$L_{\rm A}, L_{\rm B}, L_{\rm C}$	Input filter inductors	220	μΗ		
$C_{\rm A}, C_{\rm B}, C_{\rm C}$	Input filter capacitors	2	μF		
С	DC-link capacitors	180	μF		

EMI

7

MARKEL Sp. z o.o, Piaseczno, Poland

Demonstrator

<u>Vienna rectifier – control algorithm</u>

Volatage $\gamma = \omega_G t$ αβ **Oriented Control** EPLL U_{PB} abc VOC $I_{P\alpha}$ αβ dq I_{PB} abc αĽ I_{gref}=0_+ PI ► dq αβ CB U_{DC} ref PWM αβ ΡI U_{DCf} Ι_{Ραβ} LPF K_{diff} HHC U_{DCdiff} U_{DC} V_2 V_1 U_{DCsum}

- VOC
- EPLL
- HHC

MARKEL Sp. z o.o, Piaseczno, Poland

Demonstrator

<u>Vienna rectifier – control algorithm – extended phase locked loop EPLL</u>

MARKEL Sp. z o.o, Piaseczno, Poland

Demonstrator

<u>Vienna rectifier – control algorithm – higher harmonics compensator HHC</u>

WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS

MARKEL Sp. z o.o, Piaseczno, Poland

Experiments

Laboratory setup

WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS

MARKEL Sp. z o.o, Piaseczno, Poland

Experiments

- C1 one of the three-phase grid voltages
- C2 one of the three-phase grid currents
- C3, C4 Vienna rectifier DC-link capacitor voltages

- <t_1: grid parameters checking</th> $t_1 \div t_2$: charging capacitors of VR t_2 : the main switch turns ON $t_3 \div t_4$: start of VR operation (output
voltages regulation) $t_4 \div t_5$: DC link capacitors charging
- >t₅: rated DC link voltage; end of start-up

Varsaw University of Technology

WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS

MARKEL Sp. z o.o, Piaseczno, Poland

2

Experiments

WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS

MARKEL Sp. z o.o, Piaseczno, Poland

Experiments

Power quality measurements

Selected screenshots

MARKEL Sp. z o.o, Piaseczno, Poland

Experiments

<u>Thermal measurements</u> <u>/efficiency</u>

Selected screenshots

MARKEL Sp. z o.o, Piaseczno, Poland

Conclusion

- experimental validation of a 20 kW rated SiC-based EV charger has been shown:
- □ Vienna rectifier has been built in 2U rack system
- □ at the nominal power overall efficiency of the charger was measured at over 98%
- power quality of input waveforms was at an acceptable level reaching about 1.6% of the THD index

WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF CONTROL AND INDUSTRIAL ELECTRONICS

MARKEL Sp. z o.o, Piaseczno, Poland

... Thank you for your attention.

1st Workshop on Advanced Charging Systems –WACS2022– Sept 28, 2022