
Fractional Kalman Filter algorithm for states, parameters and
order of fractional system estimation

Dominik Sierociuk

Warsaw University of Technology,
Faculty of Electrical Engineering,

Institute of Control and Industrial Electronics
Koszykowa 75, 00-662 Warszawa, Poland,e-mail:dsieroci@ee.pw.edu.pl

Abstract

This paper presents a generalization of the Kalman Fil-
ter for linear and nonlinear fractional order discrete
state-space systems. The linear and nonlinear discrete
fractional order state-space systems are also introduced.
The simplified Kalman Filter for linear case is called
Fractional Kalman Filter and its nonlinear extension is
named Extended Fractional Kalman Filter respectively.
The background and motivation for using such tech-
niques are given and the algorithms are derived and
proved. The paper also shows a simple numerical ex-
ample of linear state estimation. Finally, as an example
of nonlinear estimation paper discusses the possibility
of using these algorithms to parameters and fractional
order estimation for fractional order systems. Numeri-
cal examples of the use of these algorithms in general
nonlinear case are presented.

Keywords: discrete fractional state-space systems,
fractional Kalman filter, parameters estimation, order
estimation, Extended Fractional Kalman Filter

1 Introduction

The fractional calculus (generalization of a traditional
integer order integral and differential calculus) idea has
been mentioned in 1695 by Leibniz and L’Hospital. In
the end of 19th century Liouville and Riemann intro-
duced first definition of fractional derivative. How-
ever, only just in late 60-ties of the 20th century this
idea started to be interesting for engineers. Especially,
when it was observed that the description of some sys-

tems is more accurate when the fractional derivative is
used. For example, modeling of behavior of some ma-
terials like polymers and rubber, and especially macro-
scopic properties of materials with very complicated
microscopic structure (Bologna & Grigolini 2003) . In
(Sjöberg & Kari 2002) the frequency dependence of the
dynamics of the rubber isolator is modeled with suc-
cess by a fractional calculus element. In (Reyes-Melo
et al. 2004b) and (Reyes-Melo et al. 2004a) the relax-
ation phenomena of organic dielectric materials such as
the semi-crystalline polymers are successfully modeled
by mechanical and dielectric fractional models. The
relaxation processes in organic dielectric materials are
associated with molecular motions to a new structural
equilibrium of less energy. The Lagrangian and Hamil-
tonian mechanics can be reformulated to include frac-
tional order derivatives. This leads directly to equations
of motion with nonconservative forces such as friction
(Riewe 1997).

In (Vinagre & Feliu 2002) the electrochemical
processes and flexible robot arm are modeled by a frac-
tional order models. Even for modeling of traffic in in-
formation network fractional calculus is found to be a
useful tool (Zaborovsky & Meylanov 2001).

More examples and areas of using fractional calculus
(eg. fractal modeling, Brownian motion, rheology, vis-
coelasticy, thermodynamics and others) are to be found
in (Bologna & Grigolini 2003) and (Hilfer 2000).

In (Podlubny 2002) and (Moshrefi-Torbati &
Hammond 1998) some geometrical and physical inter-
pretation of fractional calculus are presented.

Another area of engineers interest, very fast devel-
oping, is the use of fractional order controllers, like
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PIλDµ controllers (Podlubny et al. 1997) or CRONE
(Oustaloup 1993). ThePIλDµ controller has both dif-
ferentiation and integration of fractional order, which
gives extra ability to tune control systems. In (Suarez
et al. 2003) the fractional PID controller is used to path-
tracking problem of an industrial vehicle. In (Ferreira &
Machado 2003) the fractional-order algorithms in posi-
tion/force hybrid control of a robotic manipulators are
applied.

It is also worth mentioning that fractional order poly-
nomials, used in the analysis of discrete-time con-
trol systems, may be treated asnD linear systems
(Gałkowski 2005).

The author of this paper has found the fractional or-
der dynamic model as a very useful tool for modeling
some electro-dynamics process. The model allows to
introduce the nonlinear effects like friction and slipping
in an easier way than any other dynamic model of in-
teger order. The developed model forms a basis for the
model-based state feedback control. In order to apply
the state-feedback control, when the state variables are
not directly measured from the plant, a new estimation
tools appropriate for fractional order models (FKF) are
needed. When the model parameters are unknown the
parameters identification/state estimation problem oc-
curs. To solve this problem in this case one needs an
estimation tools suitable for nonlinear fractional order
models (EFKF).

The identification of parameters in fractional order
systems and especially fractional order of these sys-
tems is not as easy as in integer order systems (be-
cause of high nonlinearity). There are several algo-
rithms trying to solve this problem, most of them using
frequency domain methods (Vinagre & Feliu 2002). In
(Cois et al. 2000) the time domain parametric identifi-
cation of non integer order system is presented. In (Cois
et al. 2001) also the time domain approach is presented,
by using fractional state variable filter.

The article is organized as follows. In Section 2 the
fractional order model is introduced. The generaliza-
tion of Kalman Filter for fractional order systems is pre-
sented in Section 3. The Section 4 shows basic example
of state estimation. In Section 4.1 the examples of real-
izations of the fractional order state space systems and
Fractional Kalman Filter are presented and studied. The
nonlinear fractional order model and Extended Frac-
tional Kalman Filter are introduced in Section 5. The
examples of nonlinear estimation, i.e., the parameters
and fractional order estimation are shown in Sections 6
and 7 respectively.

2 Fractional calculus

In this paper, as a definition of fractional discrete
derivative, Grünwald-Letnikov definition (Oldham &
Spanier 1974),(Podlubny 1999) will be used.

Definition 1 The fractional order Grünwald-Letnikov
difference is given by the following equation

∆nxk =
1

hn

k
∑

j=0

(−1)j

(

n

j

)

xk−j (1)

Wheren is a fractional order andh is a sampling time
later equal to1, k is a number of sample for which the
derivative is calculated. The factor

(

n
j

)

can be obtained
from relation:

(

n

j

)

=

{

1 for j = 0
n(n−1)...(n−j+1)

j! for j > 0
(2)

�

According to this definition it is possible to obtain
the discrete equivalent of derivative (whenn is posi-
tive), the discrete equivalent of integration (whenn is
negative) or whenn equal to0 the original function.

More properties of the definition are to be found in
(Ostalczyk 2000),(Ostalczyk 2004a),(Ostalczyk 2004b)
and (Jun 2001).

Now the generalization of the discrete state space
model for fractional order derivatives, which will be
used later, is presented.

Let us assume a traditional (integer order) discrete
linear stochastic state-space system,

xk+1 = Axk + Buk + ωk (3)

yk = Cxk + νk (4)

wherexk is a state vector,uk is a system input,yk

is a system output,ωk is a system noise andνk is an
output noise at time instantk.

Equation (3) could be rewritten as follows:

∆1xk+1 = Adxk + Buk + ωk

where∆1xk is the first order difference forxk sam-
ple,Ad = A − I andI is an identity matrix, so that

∆1xk+1 = xk+1 − xk.
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Value of the space vector for time instancek+1 could
be obtained from the relation,

xk+1 = ∆1xk+1 + xk

Using this formula the traditional discrete linear sto-
chastic state space system could be rewritten as follows

∆1xk+1 = Adxk + Buk + ωk (5)

xk+1 = ∆1xk+1 + xk (6)

yk = Cxk + νk (7)

In (5) the value of the state differences is calculated,
and from this value the next state vector according to the
(6) is obtained. The output equation (7) has the same
form like in equation (4).

The first order difference can be generalized for the
difference of any even non integer order, according to
the Definition 1. In this way the following discrete sto-
chastic state space system is introduced.

Definition 2 The linear fractional order stochastic dis-
crete state-space system is given by the following set of
equations

∆nxk+1 = Adxk + Buk + ωk (8)

xk+1 = ∆nxk+1

−
k+1
∑

j=1

(−1)j

(

n

j

)

xk+1−j (9)

yk = Cxk + νk (10)

�

For the case when orders of equations are not iden-
tical, the following generalized definition is introduced
analogically:

Definition 3 The generalized linear fractional order
stochastic discrete state-space system is given by the
following

∆Υxk+1 = Adxk + Buk + ωk (11)

xk+1 = ∆Υxk+1

−

k+1
∑

j=1

(−1)jΥjxk+1−j (12)

yk = Cxk + νk (13)

where

Υk = diag
[ (

n1

k

)

. . .
(

nN

k

) ]

∆Υxk+1 =







∆n1x1,k+1

...
∆nN xN,k+1







andn1...nN are orders of system equations.
�

3 Fractional Kalman Filter (FKF)

The Kalman Filter is an optimal state vector estimator
using the knowledge about the system model, input and
output signals (Kalman 1960). Results of estimation are
obtained by minimizing in each step the following cost
function (Schutter et al. 1999):

x̂k = arg min
x

[(x̃k − x)P̃−1
k (x̃k − x)T

+ (yk − Cx)R−1
k (yk − Cx)T ] (14)

where

x̃k = E[xk|z
∗

k−1] (15)

is a state vector prediction at time instantk, defined
as the random variablexk conditioned on the measure-
ment streamz∗k−1 (Brown & Hwang 1997).

x̂k = E[xk|z
∗

k] (16)

is a state vector estimation at time instantk,defined
as the random variablexk conditioned on the measure-
ment streamz∗k.

The measurement streamz∗k contain values of the
measurement outputy0, y1, . . . , yk and input signal
u0, u1, . . . , uk.

P̃k = E
[

(x̃k − xk)(x̃k − xk)T
]

(17)

is a prediction of an estimation error covariance matrix.

Rk = E
[

νkνT
k

]

(18)

is a covariance matrix of an output noiseνk in (13).

Qk = E
[

ωkωT
k

]

(19)
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is a covariance matrix of a system noiseωk in (11) (see
Theorem 1 below).

Pk = E
[

(x̂k − xk)(x̂k − xk)T
]

(20)

is an estimation error covariance matrix.
All of those matrices are assumed to be symmetric.

Lemma 1 The state vector predictioñxk+1 is given by
the following relation

∆Υx̃k+1 = Adx̂k + Buk

x̃k+1 ≅ ∆Υx̃k+1

−
k+1
∑

j=1

(−1)jΥj x̂k+1−j

�

Proof:
The state vector prediction presented in Lemma 1 is

obtained analogically to the state prediction in integer
order Kalman Filter (Haykin 2001, Brown & Hwang
1997), where the state prediction is obtained from the
previous state estimate.

x̃k+1 = E[xk+1|z
∗

k]

= E[(Adxk + Buk + ωk

−
k+1
∑

j=1

(−1)jΥjxk+1−j)|z
∗

k]

= AdE[xk|z
∗

k] + Buk

−

k+1
∑

j=1

(−1)jΥjE[xk+1−j |z
∗

k]

In the last term of the equation above we may use the
following simplifying assumption

E[xk+1−j , z
∗

k] ≅ E[xk+1−j , z
∗

k+1−j ]

for i = 1 . . . (k + 1)

This assumption causes that the past state vector will
not be updated using newer datazk. Using this assump-
tion the following relation is obtained

x̃k+1 ≅ Adx̂k + Buk

−

k+1
∑

j=1

(−1)jΥj x̂k+1−j

This is exactly the relation to be proved.
�

Theorem 1 For the fractional order stochastic discrete
state-space system defined by Definition 3 the simpli-
fied Kalman Filter (called Fractional Kalman Filter) is
given by the set of following equations

∆Υx̃k+1 = Adx̂k + Buk (21)

x̃k+1 = ∆Υx̃k+1

−

k+1
∑

j=1

(−1)jΥj x̂k+1−j (22)

P̃k = (Ad + Υ1) Pk−1 (Ad + Υ1)
T

+ Qk−1 +
k

∑

j=2

ΥjPk−jΥ
T
j (23)

x̂k = x̃k + Kk(yk − Cx̃k) (24)

Pk = (I − KkC)P̃k (25)

where

Kk = P̃kCT (CP̃kCT + Rk)−1

with initial conditions

x0

P0 = E[(x̃0 − x0)(x̃0 − x0)
T ]

and νk and ωk are assumed to be independent and
with zero expected value.�

Proof:

a) The equations (21) and (22) follow directly from
the Lemma 1. The simplification used in proof of
Lemma 1 implies that the Kalman Filter defined in
Theorem 1 is only the suboptimal solution.

b) To proof the equation (24) the minimum of the cost
function (14) has to be found. It is obtained by
solving the following equation in which left hand
side is the first derivative of this function.

−2P̃−1
k (x̃k − x̂k) − 2CT R−1

k (yk − Cx̂k) = 0

This yields

x̂k = (P̃−1
k +CT R−1

k C)−1(P̃−1
k x̃k +CT R−1

k yk)
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Using Matrix Inversion Lemma one can find

x̂k = (P̃k − P̃kCT (CP̃kCT + R)−1CP̃k)

(P̃−1
k x̃k + CT R−1yk)

Denoting

Kk = P̃kCT (CP̃kCT + Rk)−1 (26)

which is called the Kalman Filter gain vector, the
following relation is obtained

x̂k = x̃k + P̃kCT R−1yk − KkC

− KkCP̃kCT R−1yk

This can be reduced using again relation (26) and
finally gives the state estimation equation (24).

x̂k = x̃k + Kk(yk − Cx̃k)

As it could be seen this equation is exactly the
same as in the Kalman Filter for integer order sys-
tems.

c) The proof of the equation (23) is developed from
the equation (17).

The term(x̃k − xk) is calculated as

(x̃k − xk) = Adx̂k−1 + Buk−1

−

k
∑

j=1

[

(−1)jΥj x̂k−j

]

−Adxk−1 − Buk−1 − ωk−1

+
k

∑

j=1

[

(−1)jΥjxk−j

]

=

(Ad − Υ1)(x̂k−1 − xk−1) +

−ωk−1 −

k
∑

j=2

[

(−1)jΥj(x̂k−j − xk−j)
]

The independence of each of noisesωk, νk is as-
sumed in Theorem 1. The correlations of the terms
E[xkxj ] for k 6= j are very hard to determine and
we assume that they do not have significant influ-
ence on the final results. That is why this corre-
lation will be omitted in later expressions. This

simplifying assumption, which will not be neces-
sary whenE[ωkωT

k ] = 0, implies that the expected
values of terms(x̂l − xl)(x̂m − xm)T are equal to
zero whenl 6= m, what finally gives the following
equation:

P̃k = E
[

(x̃k − xk)(x̃k − xk)T
]

= (Ad − Υ1)E[(x̂k−1 − xk−1)

(x̂k−1 − xk−1)
T ](Ad − Υ1)

T

+ E[ωk−1ω
T
k−1] +

k
∑

j=2

ΥjE[(x̂k−j − xk−j)

(x̂k−j − xk−j)
T ]ΥT

j

= (Ad + Υ1) Pk−1 (Ad + Υ1)
T

+ Qk−1

+

k
∑

j=2

ΥjPk−jΥ
T
j

As it is shown, the prediction of covariance error
matrix depends on values of covariance matrices in
previous time samples. This is the main difference
in comparison to integer order KF.

d) To proof the equation (25) the definition of the co-
variance error matrix in equation (20) is used.

Pk = E[(x̂k − xk)(x̂k − xk)T ]

= E[(x̃k + Kk(Cxk + νk − Cx̃) − xk)

(x̃k + Kk(Cxk + νk − Cx̃) − xk)T ]

= (I − KkC)E[(x̃k − xk)(x̃k − xk)T ]

(I − KkC)T + KkE[νkνT
k ]KT

k

= (I − KkC)P̃k(I − KkC)T + KkRkKk

= (I − KkHk)P̃k + (−P̃kHT
k +

+ KkHkP̃kHT
k + KkRk)KT

k

what can be reduced using (26) and finally gives
the relation (25)

Pk = (I − KkC)P̃k

Again there is no difference in comparison to con-
ventional KF.
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Equations defined in Theorem 1 organize the recur-
sive algorithm of the FKF. The algorithm starts from
the initial valuesx0, andP0 which represent our a pri-
ori knowledge about initial conditions of the estimated
system. The matrixP0 is usually a diagonal matrix with
large entries eg.100I.

4 Example of state estimation

In order to test the concept of the algorithm shown in
Section 3 let us try to estimate state variables of the sys-
tem defined by the following matrices:

Ad =

[

0 1
−a0 −a1

]

, B =

[

0
1

]

C =
[

b0 b1

]

, N =
[

n1 n2

]T

where

a0 = 0.1 a1 = 0.2

b0 = 0.1 b1 = 0.3

n1 = 0.7 n2 = 1.2

E[νkνT
k ] = 0.3, E[ωkωT

k ] =

[

0.3 0
0 0.3

]

Fractional Kalman Filter parameters used in the ex-
ample are:

P0 =

[

100 0
0 100

]

Q =

[

0.3 0
0 0.3

]

R =
[

0.3
]

Results of the state estimation are shown in Fig. 2.
As it could be seen the state variables were estimated
with high accuracy. For comparison, in Fig. 1, the mea-
sured output is presented, based on which the estimates
of original states were obtained.

4.1 Practical realization

In practical realizations of the discrete linear state-space
systems the number of elements in the sum in equation
(12) has to be limited to predefined value L. The equa-
tion (12) in this case has the following form:

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

measured output
input signal

Figure 1: Input and output signals from the plant

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

original x
1

original x
2

estimate x
1

estimate x
2

Figure 2: Estimated and original state variables

xk+1 = ∆Υxk+1 −

L
∑

j=1

(−1)jΥjxk−j+1. (27)

This simplification speeds up calculus and in real
application make the calculus possible. However it
has an effect on the accuracy of the model realiza-
tion (Sierociuk 2005a). The example of using differ-
ent L values is presented in Fig. 3. The system de-
fined in Section 4 (without noises) is simulated for
L = 63, 6, 50, 200. The square error of those realiza-
tions in compare to realization forL = 200 (what is the
ideal case) is presented in table 1. As it is could be seen
the realization forL = 50 has enough accuracy in that
particular case. For different systems the valueL which
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L error
3 10.173
6 0.81892
50 0.0025562

Table 1: Square error of realizations for different L

gives enough accuracy could be different and depends
on sample time and system time constants.

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

L=3
L=6
L=50
L=200

Figure 3: Realizations for L=3,6,50,200 of fractional
state space system

0 20 40 60 80 100 120 140 160 180 200
−20

−15

−10

−5

0

5

10

15

20

estimate x
1
 for L=6

estimate x
2
 for L=6

estimate x
1
 for L=50

estimate x
2
 for L=50

x
1
 for L=200

x
2
 for L=200

Figure 4: Estimated and original state variables for dif-
ferent values of L

In practical realization of the Fractional Kalman Fil-
ter the number of terms in sums in equations (22) and
(23) has to be also limited in the same way as in (27).

The results of estimation for different numbers of L are
presented in Fig. 4. The square error forL = 6 is equal
to 247.0994 and forL = 50 to 1.3819. The same like
for system realization presented above the realization of
the FKF has in this case enough accuracy forL = 50.
And also could be different for the different systems.

5 Nonlinear estimation - Extended
Fractional Kalman Filter

In previous sections the state estimation for linear frac-
tional order model was examined. In this section the
same problem will be solved for a nonlinear fractional
order model. The fractional order nonlinear state-space
system model is obtained analogically to the integer or-
der one and defined as follows:

Definition 4 The nonlinear stochastic discrete frac-
tional order state-space system is given by the following
set of equations:

∆Υxk+1 = f(xk, uk) + ωk

xk+1 = ∆Υxk+1

−

k+1
∑

j=1

(−1)jΥjxk+1−j

yk = h(xk) + νk

�

The nonlinear functionsf(.) andh(.), which are as-
sumed to be ofC∞ class, could be linearized according
to Taylor series expansion,

f(x) = f(x̃) +
∂f(x̃)

∂x̃
(x̃ − x) + W (28)

where W stands for the higher order terms omitted in
the linearization process.

In previous section the Fractional Kalman Filter for
the linear model was presented. For the nonlinear
model defined above the Fractional Kalman Filter must
be redefined in the same way as the Extended Kalman
Filter for the integer order models.

Lemma 2 The state vector predictioñxk+1 for the sys-
tem given by the Definition 4 is given by the following
equations
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∆Υx̃k+1 = f(x̂k, uk)

x̃k+1 ≅ ∆Υx̃k+1

−
k+1
∑

j=1

(−1)jΥj x̂k+1−j

�

Proof:
The state vector prediction presented in Lemma 2 is

obtained analogically to the state prediction in linear
Fractional Kalman Filter in Lemma 1.

x̃k+1 = E[xk+1|z
∗

k]

= E[f(xk, uk) + ωk

−

k+1
∑

j=1

(−1)jΥjxk+1−j)|z
∗

k]

Linearizingf(xk, uk) around the point̂xk according
to equation (28) one gets

x̃k+1 = f(x̂k, uk) −
∂f(x̂k, uk)

∂x̂k

(x̂k − E[xk|z
∗

k])

−

k+1
∑

j=1

(−1)jΥjE[xk+1−j |z
∗

k]

In the last term of the equation above we may use the
following simplifying assumption.

E[xk+1−j , z
∗

k] ≅ E[xk+1−j , z
∗

k+1−j ]

for i = 1 . . . (k + 1)

This assumption cause that the past state vector will
not be updated using newer datazk and will not be nec-
essary whenE[ωkωT

k ] = 0. Using this assumption the
following relation is obtained

x̃k+1 ≅ f(x̂k, uk)

−

k+1
∑

j=1

(−1)jΥj x̂k+1−j

This is exactly the relation to be proved.

Theorem 2 For the nonlinear fractional order stochas-
tic discrete state-space system given by the Definition 4
the Extended Fractional Kalman Filter is given by the
following equations

∆Υx̃k+1 = f(x̂k, uk) (29)

x̃k+1 = ∆Υx̃k+1

−

k+1
∑

j=1

(−1)jΥj x̂k+1−j (30)

P̃k = (Fk−1 + Υ1) Pk−1 (Fk−1 + Υ1)
T

+ Qk−1 +

k
∑

j=2

ΥjPk−jΥ
T
j (31)

x̂k = x̃k + Kk[yk − h(x̃k)] (32)

Pk = (I − KkHk)P̃k (33)

with initial conditions

x0

P0 = E[(x̂0 − x0)(x̂0 − x0)
T ]

where

Kk = P̃kHT
k (HkP̃kHT

k + Rk)−1

Fk−1 =

[

∂f(x, uk−1)

∂x

]

x=x̂k−1

Hk =

[

∂h(x)

∂x

]

x=x̃k

and noisesνk andωk are assumed to be independent
and with zero expected value.�

Proof:

a) The equations (29) and (30) are defined in Lemma
2. The simplification used in proof of Lemma 2
implies that the Kalman Filter defined in Theorem
2 is only the suboptimal solution.

b) To proof the equation (32) the cost function (14)
rewritten for the system given by the Definition 4
has to be minimized. The cost function in that case
has the form

x̂k = arg min
x

[(x̃k − x)P̃−1
k (x̃k − x)T

+ (yk − h(x))R−1
k (yk − h(x))T ] (34)
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By expanding the nonlinear functionh(.) to the
Taylor series and omitting the higher order terms
the following expression is obtained

x̂k = arg min
x

[

(x̃k − x)P̃−1
k (x̃k − x)T

+

(

yk − h(x̃k) +
∂h(x̃k)

∂x̃k

(xk − x̃k)

)

R−1
k

(

yk − h(x̃k) +
∂h(x̃k)

∂x̃k

(xk − x̃k)

)T
]

Denoting

Hk =

[

∂h(x)

∂x

]

x=x̃k

(35)

and equaling the derivative of the cost function to
zero, the following expression is achieved.

− 2P̃−1
k (x̃k − x̂k) − 2HT

k R−1
k [yk − h(x̃k)

− Hk(xk − x̃k)] = 0

According to the method presented in the Section
3, using Matrix Inversion Lemma and denoting

Kk = P̃kHT (HP̃kHT + Rk)−1

the equation (32) is concluded

x̂k = x̃k + K(yk − h(x̃k))

c) The proof of the (31) is analogical to the proof the
Theorem 1 (the linear case). It is obtained from the
equation (17).

The expression(x̃k − xk) in (17) is calculated as
follows

(x̃k − xk)

= f(xk−1, uk−1) + ωk−1

−

k
∑

j=1

(−1)jΥjxk−j − f(x̂k−1, uk−1)

+

k
∑

j=1

(−1)jΥj x̂k−j =

= f(x̂k−1, uk−1) + ωk−1

+
∂f(x̂k−1, uk−1)

∂x̂k−1
(xk−1 − x̂k−1)

−

k
∑

j=1

(−1)jΥjxk−j − f(x̂k−1, uk−1)

+

k
∑

j=1

(−1)jΥj x̂k−j

Denoting

Fk−1 =

[

∂f(x, uk−1)

∂x

]

x=x̂k−1

(36)

the following expression is obtained

(x̃k − xk) = ωk−1 − Fk−1(x̂k−1 − xk−1)

−

k
∑

j=1

(−1)jΥj(x̂k−j − xk−j)

The independence of each of noisesωk, νk is as-
sumed in Theorem 2. The correlations of the
terms E[xkxj ] for k 6= j are very hard to de-
termine and do not have significant influence on
the final results. That is why this correlation will
be omitted in later expressions. This simplify-
ing assumption, which will not be necessary when
E[ωkωT

k ] = 0, implies that the expected values of
terms(x̂l−xl)(x̂m−xm)T are equal to zero when
l 6= m, what finally gives the following equation:
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P̃k = E[(x̃k − xk)(x̃k − xk)T ]

= Fk−1E[(x̂k−1 − xk−1)

(x̂k−1 − xk−1)
T ]FT

k−1 + E[ωk−1ω
T
k−1]

+
k

∑

j=1

ΥjE[(x̂k−j − xk−j)

(x̂k−j − xk−j)
T ]ΥT

j

This leads directly to the equation (31)

P̃k = (Fk−1 + Υ1) Pk−1 (Fk−1 + Υ1)
T

+ Qk−1 +

k
∑

j=2

ΥjPk−jΥ
T
j

d) To proof the equation (33) the definition of the co-
variance error matrix in equation (20) is used. The
expression(x̂k −xk) in this definition is evaluated
as follows.

(x̂k − xk) = x̃k + Kk(yk − h(x̃k)) − xk

= x̃k + Kk [h(x̃k)+

+
∂h(x̃k)

∂x̃k

(xk − x̃k)

+ ωk − h(x̃k)] − xk

= (I − KkHk)(x̃k − xk) + Kkωk

Using the notation given by equation (35) and sub-
stituting to the equation (20) the following relation
are obtained

Pk = E[(x̂k − xk)(x̂k − xk)T ]

= (I − KkHk)E[(x̃k − xk)(x̃k − xk)T ]

(I − KkHk)T + KkE[ωkωT
k ]Kk

= (I − KkHk)P̃k(I − KkHk)T

+ KkRkKT
k

= (I − KkHk)P̃k + (−P̃kHT
k +

+ KkHkP̃kHT
k + KkRk)KT

k

what finally gives the equation (33)

Pk = (I − KkHk)P̃k

�

6 Example of nonlinear estimation
- parameters estimation

When the parameter or parameters of the model are un-
known or are changing it is possible to estimate them
together with state variables. It is obtained by joining
together state variables and estimated parameters in one
state vectorxw = [xT wT ]T , wherexw is a new state
vector andw is a vector containing estimated parame-
ters. This method is called Joint Estimation and leads
to the nonlinear system.

For the system defined in Section 4 and estimated pa-
rametera1, the nonlinear system equations are given as
follows:

xw
k = [xT

k a1]
T

∆Υxw
k+1 = f(xw

k , uk) + ωk

xw
k+1 = ∆Υxw

k+1 −

k+1
∑

j=1

(−1)jΥjx
w
k+1−j

yk = h(xw
k ) + νk

where

f(xw
k , uk) =





xw
2,k

−a0x
w
1,k − a1x

w
2,k + uk

0





h(xk) =
[

b0x
w
1,k + b1x

w
2,k

]

N =
[

n1 n2 1
]

Linearized matrices for EFKF are defined as

Fk =

[

∂F (x, uk)

∂x

]

x=x̂w

k

=

=





0 1 0
−a0 −a1 −x̃w

2,k

0 0 0





Hk =

[

∂H(x)

∂x

]

x=x̃w

k

=

=
[

b0 b1 0
]

Parameters of the Extended Fractional Kalman Filter
used in the example are:
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P0 =





100 0 0
0 100 0
0 0 100



 Q =





0.3 0 0
0 0.3 0
0 0 0.0001





R =
[

0.3
]

Results of Joint Estimation are shown in Fig. 5 and 6.
The final estimate of the parametera1 is equal toa1 =
0.2003. The accuracy of obtained results is very high.
In addition to parameters, estimated state variables are
obtained which can be used, for example, to construct
the adaptive control algorithms.

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

estimated variable x
1

orginal variable x
1

estimated variable x
2

orginal variable x
2

Figure 5: Estimated and original state variables of the
plant
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Figure 6: Estimation of a parametera1

7 System order estimation

The fractional order estimation problem is more com-
plicated than parameters estimation. This is why the
concept will be presented using a simpler model. Let us
assume the discrete fractional linear system of the form

∆nyk+1 = buk + ωk

where b is a system parameter andω is a system
noise.

In order to estimate the fractional order of the sys-
tem defined above the state vector and system equations
could be chosen as:

x = [y, n]T (37)

Ad =

[

0 0
0 0

]

B =

[

0.3
0

]

(38)

Υj = diag

[(

n̂k−1

j

)

,

(

1
j

)]

(39)

We assume that the parameterb is known and in this
example is equal tob = 0.3.

For such system matrices there exists a problem, be-
cause the algorithm of FKF does not incorporate the
knowledge on the fact that order of first state equation is
an elementn of state vector. Knowledge is understood
as an innovation of prediction of covariance matrix. Un-
fortunately this dependency is very hard to resolve ana-
lytically. One of the solutions of this problem is to treat
the dependency between the order of the first equation
and the state variablen as a noise and introduce in ma-
trix Q some value in the position representing this de-
pendency.

In following example matrix Q was defined as

Q =

[

0.55 0.09
0.09 0.1

]

(40)

Where value 0.09 corresponds to additional noise de-
scribed above.

Results of system order estimation are shown in Fig.
7 and 8. Despite of simplification of covariance matrix
calculation, final result̂n = 0.5994 where real value
n = 0.6 shows that this algorithm is useful.

In order to improve the results matrix Q could be
changed according to the rule used in training of neural
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Figure 7: Signal y – real plant output and its estimate
for order estimation
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Figure 8: Estimation of order n

networks by KF algorithm. For example Robbins-
Monro scheme (Haykin 2001) (Sum et al. 1996) given
by the relation:

Qk = (1 − α)Qk−1

+ αKk(yk − Hxk)(yk − Hxk)T KT
k (41)

whereα is a small positive value can be applied. In this
exampleα is equal to0.03.

The noise of output signal was increased in order to
show better noise resistance for this algorithm. The
other parameters are the same.

Results are shown in Fig. 9 and 10. As it is clear to
see, learning rule which is used (41) improves resulting
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Figure 9: Signal y – real plant output and its estimate
for order estimation with Robbins-Monro scheme
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Figure 10: Estimation of order n with Robbins-Monro
scheme

convergence and accuracy and it also improve robust-
ness of the algorithm. The estimated order was equal to
0.6010.

8 Conclusions

The article presents use of the Kalman filter algorithm
to the estimation of parameters or order of fractional
system. Parameters estimation example shows high ac-
curacy of this estimation and its robustness with respect
to noise. This algorithm could be also used for esti-
mation of time varying parameters, especially for the
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adaptive control processes. The system order estima-
tion problem was found to be more complicated. De-
spite of the necessary simplifications of the algorithm,
obtained results found it very useful and also noise re-
sistant. However, more study and tests are needed.
In particular, the sigma-point approach Kalman Filters
could be a more appropriate solution for this problem
(Sierociuk 2005b).
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