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Abstract tems is more accurate when the fractional derivative is

used. For example, modeling of behavior of some ma-
This paper presents a generalization of the Kalman Ririals like polymers and rubber, and especially macro-
ter for linear and nonlinear fractional order discretgecopic properties of materials with very complicated
state-space systems. The linear and nonlinear discrateroscopic structure (Bologna & Grigolini 2003) . In
fractional order state-space systems are also introduq&joberg & Kari 2002) the frequency dependence of the
The simplified Kalman Filter for linear case is calledynamics of the rubber isolator is modeled with suc-
Fractional Kalman Filter and its nonlinear extension tess by a fractional calculus element. In (Reyes-Melo
named Extended Fractional Kalman Filter respectivebt al. 2004) and (Reyes-Melo et al. 2084 the relax-
The background and motivation for using such techtion phenomena of organic dielectric materials such as
nigues are given and the algorithms are derived atiek semi-crystalline polymers are successfully modeled
proved. The paper also shows a simple numerical ¥ mechanical and dielectric fractional models. The
ample of linear state estimation. Finally, as an exampiglaxation processes in organic dielectric materials are
of nonlinear estimation paper discusses the possibilagsociated with molecular motions to a new structural
of using these algorithms to parameters and fractiorguilibrium of less energy. The Lagrangian and Hamil-
order estimation for fractional order systems. Numeiisnian mechanics can be reformulated to include frac-
cal examples of the use of these algorithms in genetianal order derivatives. This leads directly to equations
nonlinear case are presented. of motion with nonconservative forces such as friction

Keywords: discrete fractional state-space system@®iewe 1997).

fractional Kalman filter, parameters estimation, order In (Vinagre & Feliu 2002) the electrochemical
estimation, Extended Fractional Kalman Filter processes and flexible robot arm are modeled by a frac-

tional order models. Even for modeling of traffic in in-

formation network fractional calculus is found to be a
1 Introduction useful tool (Zaborovsky & Meylanov 2001).

More examples and areas of using fractional calculus

The fractional calculus (generalization of a tradition4eg. fractal modeling, Brownian motion, rheology, vis-
integer order integral and differential calculus) idea h&gelasticy, thermodynamics and others) are to be found
been mentioned in 1695 by Leibniz and L'Hospital. I (Bologna & Grigolini 2003) and (Hilfer 2000).
the end of 19th century Liouville and Riemann intro- In (Podlubny 2002) and (Moshrefi-Torbati &
duced first definition of fractional derivative. How-Hammond 1998) some geometrical and physical inter-
ever, only just in late 60-ties of the 20th century thigretation of fractional calculus are presented.
idea started to be interesting for engineers. EspeciallyAnother area of engineers interest, very fast devel-
when it was observed that the description of some syming, is the use of fractional order controllers, like



PI*D* controllers (Podlubny et al. 1997) or CRONE2 Fractional calculus

(Oustaloup 1993). Th&I* D controller has both dif-

ferentiation and integration of fractional order, whichn this paper, as a definition of fractional discrete
gives extra ability to tune control systems. In (Suareterivative, Grunwald-Letnikov definition (Oldham &
et al. 2003) the fractional PID controller is used to pati$panier 1974),(Podlubny 1999) will be used.

tracking problem of an industrial vehicle. In (Ferreira &

Machado 2003) the fractional-order algorithms in podPefinition 1 The fractional order Grunwald-Letnikov
tion/force hybrid control of a robotic manipulators ardifference is given by the following equation

applied.

. .. . k
Itis also worth mentioning that fractional order poly- Alg, — 1 ni(" 1

nomials, used in the analysis of discrete-time con- Tk = ;Tnz(_ P )en @

trol systems, may be treated a® linear systems =0

(Gatkowski 2005). Wheren is a fractional order andh is a sampling time

The author of this paper has found the fractional Ogyer equal tol, & is a number of sample for which the

der dynamic model as a very useful tool for modelingejyative is calculated. The factdf) can be obtained
some electro-dynamics process. The model allowsstgm relation: !

introduce the nonlinear effects like friction and slipping

in an easier way than any other dynamic model of in- n 1 for j = 0
teger order. The developed model forms a basis for the ( ) { n(n=1)..(n—j+1) o0 i< 2
model-based state feedback control. In order to apply 3! ory >

the state-feedback control, when the state variables gye

not directly measured from the plant, a new estimation

tools appropriate for fractional order models (FKF) are According to this definition it is possible to obtain
needed. When the model parameters are unknown {he discrete equivalent of derivative (whenis posi-
parameters identification/state estimation problem afye), the discrete equivalent of integration (wheris
curs. To solve this problem in this case one needs g&yative) or whem equal to0 the original function.
estimation tools suitable for nonlinear fractional order Mmore properties of the definition are to be found in

models (EFKF). (Ostalczyk 2000),(Ostalczyk 208y(Ostalczyk 2008)

The identification of parameters in fractional ordegnd (Jun 2001).
systems and especially fractional order of these sysnow the generalization of the discrete state space
tems is not as easy as in integer order systems (Rgsdel for fractional order derivatives, which will be
cause of high nonlinearity). There are several alggsed |ater, is presented.
rithms trying to solve this problem, most of them using | et ys assume a traditional (integer order) discrete
frequency domain methods (Vinagre & Feliu 2002). Ifjhear stochastic state-space system,

(Cois et al. 2000) the time domain parametric identifi-
cation of non integer order system is presented. In (Cois
et al. 2001) also the time domain approach is presented,
by using fractional state variable filter.

The article is organized as follows. In Section 2 the
fractional order model is introduced. The generaliza- wherez;, is a state vectory, is a system inputy
tion of Kalman Filter for fractional order systems is preg 4 system outputyy is a sysfem noise ang, is an
sented in Section 3. The Section 4 shows basic examgiﬁput noise at time instast
of state estimation. In Section 4.1 the examples of reaI'Equation (3) could be rewritten as follows:
izations of the fractional order state space systems and
Fractional Kalman Filter are presented and studied. The
nonlinear fractional order model and Extended Frac-
tional Kalman Filter are introduced in Section 5. The whereAlx, is the first order difference for; sam-
examples of nonlinear estimation, i.e., the parametejie, A, = A — I and/ is an identity matrix, so that
and fractional order estimation are shown in Sections 6
and 7 respectively. Az = g1 — 2.

Tp41 = Az + Bup +wyg 3)
Y = Czp+uy (4)

Az = Agzy, + Buy, + wi



Value of the space vector for time instaricel could where

be obtained from the relation,
Ti =diag [ (}) (")

1
Tpy1 = A wpyq +Tp

Ay
Using this formula the traditional discrete linear sto- AT - L1
chastic state space system could be rewritten as follows Tht+1 = :
A" TN k1
f system equations.
Al — Az + Bup 4+ w 5 andn,...ny are orders o
k+1 f k k k (5) -
Thr1 = A Zppr+ap (6)
ye = Cxp+up (7)

3 Fractional Kalman Filter (FKF)

In (5) the value of the state differences is calculated,

and from this value the next state vector according to tihfie Kalman Filter is an optimal state vector estimator
(6) is obtained. The output equation (7) has the samging the knowledge about the system model, input and
form like in equation (4). output signals (Kalman 1960). Results of estimation are

The first order difference can be generalized for thhtained by minimizing in each step the following cost
difference of any even non integer order, according f@nction (Schutter et al. 1999):

the Definition 1. In this way the following discrete sto-
chastic state space system is introduced.

o ) ) o Zr = argmin|[(Zy — L)pk_l(ik - x)T
Definition 2 The linear fractional order stochastic dis- z
crete state-space system is given by the following set of + (yx — Cz)R;, '(yp — Cz)"] (14)
equations
where
Azppr = Agri + Bug 4+ wi (8)
Tpp1 = ATzpi T = Elzg|2_4] (15)
k“( 1) n ‘ ) is a state vector prediction at time instantdefined
- ; - ) R as the random variable, conditioned on the measure-
= ment stream; _, (Brown & Hwang 1997).
ye = Cxp+ vy (10)
[] &y = Elzk|zg] (16)

For th h d f i tid is a state vector estimation at time instandefined
_ ror In€é case when orders o equations aré NOLIORIL o 19 qom variable, conditioned on the measure-
tical, the following generalized definition is introduce

analogically: ent streamy;,.
gicaly: The measurement streagj contain values of the
measurement outpuio,y1,...,yx and input signal

Definition 3 The generalized linear fractional order
Ulyeooy Uk

stochastic discrete state-space system is given by e

following -
P.=E [(fk — l’k)(fk - wk)T] (17)
ATIk-H —  Ayep + Bug + o (11) is a prediction of an estimation error covariance matrix.
_ T
oen = Ao Ri= B[] (18)
- Z(—l)jzjkH,j (12) s a covariance matrix of an output noigein (13).
j=1
Yy = Cxp+ug (13) Qr=E [wkwg} (19)



is a covariance matrix of a system noisgin (11) (see  This is exactly the relation to be proved.
Theorem 1 below). O

P.=E [(:ﬁk — ) (& — a:k)T] (20) Theorem 1 For the fractional order stochastic discrete
state-space system defined by Definition 3 the simpli-

is an estimation error covariance matrix. _fied Kalman Filter (called Fractional Kalman Filter) is
All of those matrices are assumed to be symmetricgiyen by the set of following equations

Lemma 1 The state vector predictiafy ; is given by

the following relation AV = Agdw + Buy (21)
Th1 A Fh
ATEp ., = Agiy + Buy k1 _
_ 1Y .+ .
Trpn = AYa ;( DY & k415 (22)
N Py = (Ag+7T1) Py (Aa+T11)"
— Z(—l) Tidri_j e = (Ag+7T1)Peo1(Ag+711)
j=1 k
- + Qr-1+ ZTijij? (23)
j=2
Proof: L -
The state vector prediction presented in Lemma 1 is Tk Tt K’“(y’i_ ) (24)
obtained analogically to the state prediction in integer Py, (I — KxC) P (25)
order Kalman Filter (Haykin 2001, Brown & Hwang where

1997), where the state prediction is obtained from the
previous state estimate. Ky, = P.CT(CP,CT + Ry,)~!
with initial conditions
Tpt1 = Elzpialz]
= E[(Ad:ck + Buy + wg
k+1 )
— D gyl Po
j=1
k+1 )
D D G V1 10| TN EA

Jj=1

2o
= E[(Z0 — 20)(Z0 — 20)"]

and v, and w;, are assumed to be independent and
with zero expected valulk.

Proof:

a) The equations (21) and (22) follow directly from

In the last term of the equation above we may use the the Lemma 1. The simplification used in proof of

following simplifying assumption Lemma 1 implies that the Kalman Filter defined in
Theorem 1 is only the suboptimal solution.

Elxgr1—j, 25 R E[Xgr1—, 2511 . -
[ht1- k_] [rt1-g: 2] b) To proof the equation (24) the minimum of the cost
i=1...(k+1) function (14) has to be found. It is obtained by
This assumption causes that the past state vector will Solving the following equation in which left hand
not be updated using newer daja Using this assump- side is the first derivative of this function.
tion the following relation is obtained

for

—2P (&g, — &) — 2CT R (yp — i) = 0

i’k-&-l =~ Adi‘k+Buk This ylelds
k+1
- (_1)jTj9Ack+1fj . _ -
g b= (B +C R O) T (B O Ry )



Using Matrix Inversion Lemma one can find

iy = (P,—PCT(CP.CT+R)"ICH)
(P{li’k —+ CTR_lyk)
Denoting
Ky,

= P.CT(CP.CT + Rt (26)

which is called the Kalman Filter gain vector, the
following relation is obtained

T = fk+kaTR71yk*KkC
— KkCPkCTRilyk

This can be reduced using again relation (26) and
finally gives the state estimation equation (24).

& = i + Ki(yx — Odp)

As it could be seen this equation is exactly the
same as in the Kalman Filter for integer order sys-
tems.

d)

The proof of the equation (23) is developed from
the equation (17).

The term(z;, — x,) is calculated as

(T — ) = AgZp_1+ Bup_y
k
— > [ Tdy]
=1
—Agrp_1 — Bug_1 —wp_1
k
+ (=1 Fjap—s] =
=1
(Ag —T1)(@p—1 — 2p—1) +
k
—Wkp—-1 — Z [(—1)jTj(i‘k,j — {E}g,j)]

<.
V)

The independence of each of noisgs v, is as-
sumed in Theorem 1. The correlations of the terms
E[zyxz,] for k # j are very hard to determine and
we assume that they do not have significant influ-
ence on the final results. That is why this corre-
lation will be omitted in later expressions. This

simplifying assumption, which will not be neces-
sary wherE[w,w!] = 0, implies that the expected
values of term¢z; — x;)(&,, — x,,)T are equal to
zero when # m, what finally gives the following
equation:

Py = E[(@ — )@ — k)]
= (Aqg—T)E[(@r-1 — 1-1)
(Zr—1 — zp—1)"](Ag — L1)"
k
+ Elwp1wi ]+ Z TE[(Zr—j — Tk—j)
(& — x—y) "]
= (Ag+T1) Pic1 (Ag+T1)" + Qrr
+

k
> TP
j=2

As it is shown, the prediction of covariance error
matrix depends on values of covariance matrices in
previous time samples. This is the main difference
in comparison to integer order KF.

To proof the equation (25) the definition of the co-
variance error matrix in equation (20) is used.

Py = E[(& — o) (@ — 2x)"]

= E[(@ + Kr(Cxp + v, — CT) — xy)
(Zx + Kp(Cxy + vp, — CF) — x3) 7]

= (I - KyO)E[(&x — ) (@ — zx)"]
(I - KxCO)" + Kp Bl | K

= (I-KiO)P:(I — K,C)* + Ky R Ky,

= (I - KuHy)bPy, + (—P.HT +

+ KpHpP HF + KpRp) KL

what can be reduced using (26) and finally gives
the relation (25)

P, = (I — K;O)P;,

Again there is no difference in comparison to con-
ventional KF.



|:| 3
Equations defined in Theorem 1 organize the recur- —— measured output
sive algorithm of the FKF. The algorithm starts from > » [~ Input signal
the initial valuest,, and P, which represent our a pri-
ori knowledge about initial conditions of the estimated 1|t g v
system. The matri¥, is usually a diagonal matrix with
large entries egl001. 0

4 Example of state estimation

In order to test the concept of the algorithm shown in"|
Section 3 let us try to estimate state variables of the sys - e
tem defined by the following matrices: T wm W @ w e 0w w10

Figure 1: Input and output signals from the plant
0
1 } 15

101

— original X,
“““ original x,,
. estimate X,
4 estimate X,

ap=0.1 a3 =0.2
bp=0.1 b;=0.3 o
ny = 0.7 Ng = 1.2

0 03

Eluvf] = 0.3, Elwwi ] = { 03 0 }

-15
0

Fractional Kalman Filter parameters used in the ex-

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

ample are: Figure 2: Estimated and original state variables
100 O 03 0
PU_{O 100}62_[0 0.3}
L
R=1[03] Tepr = Az = > (1T jia. (27)
j=1

Results of the state estimation are shown in Fig. 2.
As it could be seen the state variables were estimated his simplification speeds up calculus and in real
with high accuracy. For comparison, in Fig. 1, the meapplication make the calculus possible. However it
sured output is presented, based on which the estimdtas an effect on the accuracy of the model realiza-
of original states were obtained. tion (Sierociuk 2008). The example of using differ-
ent L values is presented in Fig. 3. The system de-
fined in Section 4 (without noises) is simulated for
L = 63,6,50,200. The square error of those realiza-
In practical realizations of the discrete linear statecgpations in compare to realization fdr = 200 (what is the
systems the number of elements in the sum in equatideal case) is presented in table 1. As it is could be seen
(12) has to be limited to predefined value L. The equthe realization for, = 50 has enough accuracy in that
tion (12) in this case has the following form: particular case. For different systems the valughich

4.1 Practical realization



L error The results of estimation for different numbers of L are
3 10.173 presented in Fig. 4. The square error for= 6 is equal

6 0.81892 t0 247.0994 and for L. = 50 to 1.3819. The same like

50 | 0.0025562 for system realization presented above the realization of

the FKF has in this case enough accuracyfioe 50.

o . And also could be different for the different systems.
Table 1: Square error of realizations for different L

gives enough accuracy could be different and deper‘lr:as Nonlinear estimation - Extended
on sample time and system time constants. Fractional Kalman Filter

In previous sections the state estimation for linear frac-
tional order model was examined. In this section the
same problem will be solved for a nonlinear fractional
order model. The fractional order nonlinear state-space
system model is obtained analogically to the integer or-
der one and defined as follows:

|
|
N OO W
o O
o
T

[l el el el

Definition 4 The nonlinear stochastic discrete frac-
tional order state-space system is given by the following
set of equations:

T _
S A ket = fonu)
Tht1 = A Ty
Figure 3: Realizations for L=3,6,50,200 of fractional k+1 '
state space system — D (=) wrs—;
j=1
y = h(ze) +we
20
|

The nonlinear functiong(.) andh(.), which are as-
sumed to be of*° class, could be linearized according
to Taylor series expansion,

_ of(z),.
f@) = f@) + =52 @ -0+ W (29)
“esimaen o6 || | || T where W stands for the higher order terms omitted in
estimate Xy for L=6 | . . .
- ostmatex,for =50 the linearization process.
-15 4 estimate x, for L=50 | \ \ B . . . .
~x o In previous section the Fractional Kalman Filter for

the linear model was presented. For the nonlinear
model defined above the Fractional Kalman Filter must

Figure 4: Estimated and original state variables for dige redefined in the same way as the Extended Kalman
ferent values of L Filter for the integer order models.

T L L L L L L L
20 40 60 80 100 120 140 160 180 200

In practical realization of the Fractional Kalman FilLemma 2 The state vector predictiafy ; for the sys-
ter the number of terms in sums in equations (22) atem given by the Definition 4 is given by the following
(23) has to be also limited in the same way as in (28quations



Theorem 2 For the nonlinear fractional order stochas-
tic discrete state-space system given by the Definition 4

AT = f(ae,w) the Extended Fractional Kalman Filter is given by the
Frn &2 AYa following equations
k+1
_ 1) _
jz:;( a1 AVErpr = f(&k,ur) (29)
Fper = AYag
| k+1 4
D) G Vi ST R (30)
Proof: j=1
The state vector prediction presented in Lemma 2 is P, = (Fi1 + Y1) Poey (Fo1 + Tl)T
obtained analogically to the state prediction in linear L
Fractional Kalman Filter in Lemma 1. Qe+ Z ijkijr;ﬁ_p (31)
j=2
Tt Elzgi1]2]] Tk Ty + Kilyk - h(Zy)] (32)
—  E[f(zx, up) + i Py (I — Ky Hy,) Py, (33)
kt1 } with initial conditions
= D> (Ym0
Jj=1 Lo
Py =E[(Z0 — 70)(Z0 — 70)T
Linearizing f (xx, ux) around the point; according 0 (@ )@ 2
to equation (28) one gets where

T = f(Tr,ur) — %]Aﬂ;w)(@k — Elzk|2;])
kt1 _ '
— Y (1Y Elegglz]
=1

In the last term of the equation above we may use the

following simplifying assumption.

K, = ﬁng(Hkpng + R}g)_l

F | = [3f($égk—1)] A
e[

and noise;, andw,, are assumed to be independent

and with zero expected valiik.

Elzk1-j, 2] 2 Elwgi1-5, 2541 ]

for i=1...(k+1)

This assumption cause that the past state vector wi
not be updated using newer dataand will not be nec-
essary wherk|w,wi] = 0. Using this assumption the
following relation is obtained

J (&g, ug)

k+1

DY dy

Jj=1

Th41

This is exactly the relation to be proved.

Proof:

a) The equations (29) and (30) are defined in Lemma

I 2. The simplification used in proof of Lemma 2
implies that the Kalman Filter defined in Theorem
2 is only the suboptimal solution.

b) To proof the equation (32) the cost function (14)
rewritten for the system given by the Definition 4
has to be minimized. The cost function in that case
has the form

arg min[(Z — z) P, ' (7, — )

(ye — h(@)) Ry (i — h(x))T] (34)

T



By expanding the nonlinear functiok(.) to the
Taylor series and omitting the higher order terms
the following expression is obtained

Zr = argmin {(jk —2) P (@ — )T

+ (y;g - h(ik) + %ﬂi’g)(m — i‘k)) Rlzl

~ T
<yk — h(zy) + %:T:)(m - i‘k))
Denoting
Hy = [3’;;)} - (35)

and equaling the derivative of the cost function to
zero, the following expression is achieved.

— 2P M@k — &x) — 2HI R [ye — h(@k)
— Hp(xp — )] =0

According to the method presented in the Section

3, using Matrix Inversion Lemma and denoting

Kp=P,HT(HP,HT + R;,)™!

the equation (32) is concluded

Tp =Tk + K(yr — h(Tx))

The proof of the (31) is analogical to the proof the
Theorem 1 (the linear case). Itis obtained from the
equation (17).

The expressioz, — x) in (17) is calculated as
follows

(T — w)
= f(zr—1,up—1) + wr_1
k
— D (1T — f(Ero1, k1)
j=1
k .
+ D (1Y a =
j=1
= f(@r—1,up—1) + wr—1
Of (En—1,ur—1)

+ Y (Tp—1 — Th—1)
k .
- Z(—l)JTﬂk—j — f(@r—1,ur-1)
j=1
k .
+ Y (1T
j=1
Denoting
Foo1 = {af (“Té““)} (36)
z =%k _1

the following expression is obtained

Wi—1 — Frp—1(&p—1 — 2x—1)
k
— D (1Y (Eky — wky)

Jj=1

(Tp —xK) =

The independence of each of noisgs vy, is as-
sumed in Theorem 2. The correlations of the
terms E[zx;] for k # j are very hard to de-
termine and do not have significant influence on
the final results. That is why this correlation will
be omitted in later expressions. This simplify-
ing assumption, which will not be necessary when
Elwrw!] = 0, implies that the expected values of
terms(i; — ;) (2, — )T are equal to zero when

I # m, what finally gives the following equation:



6 Example of nonlinear estimation
P, = E[(@—21) @k — 20)7) - parameters estimation
= Fp1E[(Zk—1 — T-1)

. When the parameter or parameters of the model are un-
(&1 = 2k—1) T F_ + Elwp1wi_q]

known or are changing it is possible to estimate them

k together with state variables. It is obtained by joining
+ D YVE[(@r —xky) together state variables and estimated parameters in one
7=1 state vectorr” = [2TwT]T, wherez? is a new state
(Br—j — mp—y) " ]YXT vector andw is a vector containing estimated parame-
ters. This method is called Joint Estimation and leads
This leads directly to the equation (31) to the nonlinear system.

For the system defined in Section 4 and estimated pa-
~ rametera;, the nonlinear system equations are given as

T
P, = (Fr1+ '{1) Pe 1 (Fr—1+71) follows:
+ Qk—l + Z T]‘Pk_jT?
1= ¢ = [afa))
To proof the equation (33) the definition of the co- AT:E}:H = faf, ug) +wk
variance error matrix in equation (20) is used. The k+1
expressior{iy, — xy,) in this definition is evaluated o = AVap = (-1,
as follows. =1 '
ye = h(zy) +wk

(B — 1) = ¥+ Ki(yx — h(Tr)) — 2 where

= I+ K [h(jk)+

oh(x -
+ 8(:%:) (g — Zk) Ty},
c _ w’ — _ W w +
b owr = h(ER)] — o fxy, ug) aoTyy, — a1y + ug

0
= (I — Kka)(fEk — Ik) + kak

Using the notation given by equation (35) and sub- h(ax) = [boaty + brag]

stituting to the equation (20) the following relation

are obtained N=[n ny 1]
Linearized matrices for EFKF are defined as
Pk = E[((i’k — :Ck)(ii’k — :L'k)T]
= (I = KpHOB[(@, — o) (Tx — 21)"] oo [9F( ) _
(I - KpHy,)" + K Elwpwi | Ky, ko= or ...
= (I - KpHy)Py(I — KyHy,)" o 1 o
+ KpRpK[l i ) = —Go —a1 —Tgy
= (I — KyHy)Py + (-PHF + 0 0 0
+ KpHpP H! + KpRp) KL " [(‘)H(m)]
k = =
what finally gives the equation (33) ou o=y
= [bo b 0]

P, = (I — KpHy) Py . .
k= kHi) Py Parameters of the Extended Fractional Kalman Filter

used in the example are:

10



7 System order estimation

100 0 0 03 0 0 |The fractional order estimation problem is more com-
Fop=| 0 10 0 [@=| 0 03 0 plicated than parameters estimation. This is why the
0 0 100 0 0 0.0001 |conceptwill be presented using a simpler model. Let us
assume the discrete fractional linear system of the form
R=103]
Results of Joint Estimation are shown in Fig. 5 and 6. Appr = bug +wy

The final estimate of the parameteris equal toa; =

0.2003. The accuracy of obtained results is very high.

In addition to parameters, estimated state variables ar&vhereb is a system parameter andis a system
obtained which can be used, for example, to construnstise.

the adaptive control algorithms. In order to estimate the fractional order of the sys-
tem defined above the state vector and system equations
15 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ could be chosen as:
P + estimated variable x,

e = [y,n|" (37)

:?* %;W* * “““ estimated variable x,

* ___ orginal variable X,
5F *

SEEL (s e

() ()]

5 : We assume that the parametids known and in this
-10f A g ot example is equal tb = 0.3.
;j For such system matrices there exists a problem, be-
e cause the algorithm of FKF does not incorporate the

knowledge on the fact that order of first state equation is

Figure 5: Estimated and original state variables of & €lement of state vector. Knowledge is understood
plant as an innovation of prediction of covariance matrix. Un-

fortunately this dependency is very hard to resolve ana-

lytically. One of the solutions of this problem is to treat
03 —— the dependency between the order of the first equation
and the state variable as a noise and introduce in ma-
trix Q some value in the position representing this de-
pendency.

In following example matrix Q was defined as

—— estimated parameter a

0.55 0.09 ] (40)

@= [ 0.09 0.1

Where value 0.09 corresponds to additional noise de-
scribed above.

Results of system order estimation are shown in Fig.
7 and 8. Despite of simplification of covariance matrix

w »  » o = w o » = o calculation, final result. = 0.5994 where real value
n = 0.6 shows that this algorithm is useful.

Figure 6: Estimation of a parameter In order to improve the results matrix Q could be
changed according to the rule used in training of neural

11
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Figure 7: Signal y — real plant output and its estimategure 9: Signal y — real plant output and its estimate

for order estimation for order estimation with Robbins-Monro scheme
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Figure 8: Estimation of order n Figure 10: Estimation of order n with Robbins-Monro
scheme

networks by KF algorithm. For example Robbins-

Monro scheme (Haykin 2001) (Sum et al. 1996) givegPnvergence and accuracy and it also improve robust-
by the relation: ness of the algorithm. The estimated order was equal to

0.6010.
Qe = (1-a)Qr1
+ aKi(ye — Hay)(yr — Hey) " K[ (41) :
8 Conclusions
wherea is a small positive value can be applied. In this
examplex is equal t00.03. The article presents use of the Kalman filter algorithm
The noise of output signal was increased in order to the estimation of parameters or order of fractional
show better noise resistance for this algorithm. Tisgstem. Parameters estimation example shows high ac-
other parameters are the same. curacy of this estimation and its robustness with respect
Results are shown in Fig. 9 and 10. As itis clear to noise. This algorithm could be also used for esti-
see, learning rule which is used (41) improves resultingation of time varying parameters, especially for the

12



adaptive control processes. The system order estimdan, S.C. (2001), ‘A note on fractional differences
tion problem was found to be more complicated. De- based on a linear combination between forward
spite of the necessary simplifications of the algorithm, and backward differencesGomputers and Math-
obtained results found it very useful and also noise re- ematics with Applicationd1, 373-378.

sistant. However, more study and tests are needed : .
In particular, the sigma-point approach Kalman Filtellgalmz_in’ RL_'dOIPh' Emil (19.69)' A new approach to
linear filtering and prediction problemdransac-

could be a more appropriate solution for this problem . i . .
(Sierociuk 2008). tions of the ASME-Journal of Basic Engineering

82(Series D), 35-45.
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